Agroecology

 

Agroecology is the study of ecological processes applied to agricultural production systems. Bringing ecological principles to bear in agroecosystems can suggest novel management approaches that would not otherwise be considered. The term is often used imprecisely and may refer to "a science, a movement, [or] a practice". Agroecologists study a variety of agroecosystems. The field of agroecology is not associated with any one particular method of farming, whether it be organic, integrated, or conventional, intensive or extensive. However, it has much more in common with organic and integrated farming.
Instead, agroecologists may study questions related to the four system properties of agroecosystems: productivity, stability, sustainability and equitability. As opposed to disciplines that are concerned with only one or some of these properties, agroecologists see all four properties as interconnected and integral to the success of an agroecosystem. Recognizing that these properties are found on varying spatial scales, agroecologists do not limit themselves to the study of agroecosystems at any one scale: gene-organism-population-community-ecosystem-landscape-biome, field-farm-community-region-state-country-continent-global.
Agroecologists do not always agree about what agroecology is or should be in the long-term. Different definitions of the term agroecology can be distinguished largely by the specificity with which one defines the term "ecology", as well as the term's potential political connotations. Definitions of agroecology, therefore, may be first grouped according to the specific contexts within which they situate agriculture. Agroecology is defined by the OECD as "the study of the relation of agricultural crops and environment." This definition refers to the "-ecology" part of "agroecology" narrowly as the natural environment. Following this definition, an agroecologist would study agriculture's various relationships with soil health, water quality, air quality, meso- and micro-fauna, surrounding flora, environmental toxins, and other environmental contexts.
Agroecology is also defined differently according to geographic location. In the global south, the term often carries overtly political connotations. Such political definitions of the term usually ascribe to it the goals of social and economic justice; special attention, in this case, is often paid to the traditional farming knowledge of indigenous populations. North American and European uses of the term sometimes avoid the inclusion of such overtly political goals. In these cases, agroecology is seen more strictly as a scientific discipline with less specific social goals.
A key component of animal welfare is freedom to perform their innate (natural) behavior, and this is stated in one of the basic principles of organic agriculture. Also, there are other aspects of animal welfare to be considered such as freedom from hunger, thirst, discomfort, injury, fear, distress, disease and pain. Because organic standards require loose housing systems, adequate bedding, restrictions on the area of slatted floors, a minimum forage proportion in the ruminant diets, and tend to limit stocking densities both on pasture and in housing for dairy cows, they potentially promote good foot and hoof health. Some studies show lower incidence of placenta retention, milk fever, abomasums displacement and other diseases in organic than in conventional dairy herds. However, the level of infections by parasites in organically managed herds is generally higher than in conventional herds.
In places with rigorous winter, untilled soil can take longer to warm and dry in spring, which may delay planting to less ideal dates. Another factor to be considered is that organic residue from the prior year's crops lying on the surface of untilled fields can provide a favorable environment to pathogens, helping to increase the risk of transmitting diseases to the future crop. And because no-till farming provides good environment for pathogens, insects and weeds, it can lead farmers to a more intensive use of chemicals for pest control. Other disadvantages of no-till include underground rot, low soil temperatures and high moisture.