Evolutionary biology


Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth, starting from a single common ancestor. These processes include natural selection, common descent, and speciation.
The discipline emerged through what Julian Huxley called the modern synthesis (of the 1930s) of understanding from several previously unrelated fields of biological research, including genetics, ecology, systematics, and paleontology.
More recently, the merge between the biological science and applied sciences gave birth to new fields that are extensions of evolutionary biology, such as evolutionary robotics, engineering, algorithms, economics, and architecture. The basic mechanisms of evolution are applied directly or indirectly to come up with novel designs or solve problems that are difficult to solve otherwise. The research generated in these applied fields in turn contribute to progress, especially thanks to work on evolution in computer science and engineering fields such as mechanical engineering.
Microbiology too is becoming an evolutionary discipline, now that microbial physiology and genomics are better understood. The quick generation time of bacteria and viruses such as bacteriophages makes it possible to explore evolutionary questions.
Many biologists have contributed to shaping the modern discipline of evolutionary biology. Theodosius Dobzhansky and E. B. Ford established an empirical research programme. Ronald Fisher, Sewall Wright and J. S. Haldane created a sound theoretical framework. Ernst Mayr in systematics, George Gaylord Simpson in paleontology and G. Ledyard Stebbins in botany helped to form the modern synthesis. James Crow, Richard Lewontin, Dan Hartl, Marcus Feldman, and Brian Charlesworth trained a generation of evolutionary biologists.
One challenge in studying genetic architecture is that the classical population genetics that catalysed the modern evolutionary synthesis must be updated to take into account modern molecular knowledge. This requires a great deal of mathematical development to relate DNA sequence data to evolutionary theory as part of a theory of molecular evolution. For example, biologists try to infer which genes have been under strong selection by detecting selective sweeps.
Some scientific journals specialise exclusively in evolutionary biology as a whole, including the journals Evolution, Journal of Evolutionary Biology, and BMC Evolutionary Biology. Some journals cover sub-specialties within evolutionary biology, such as the journals Systematic Biology, Molecular Biology and Evolution and its sister journal Genome Biology and Evolution, and Cladistics.